Name		_Class	Date	
4-3	Practice			Form G
	Modeling with Quadratic Fun	octions		

Find an equation in standard form of the parabola passing through the points. **3.** (2, -8), (3, -8), (6, 4)**4.** (-1, -12), (2, -6), (4, -12)

7. (-1, -6), (0, 0), (2, 6)

8. (-3, 2), (1, -6), (4, 9)

. (x	f(x)
ſ	- 1	- 6
	1	4
	2	12

- **14.** The table gives the number of pairs of skis sold in a sporting goods store for several months last year.
 - **a.** Find a quadratic model for the data, using January as month 1, February as month 2, and so on.
 - **b.** Use the model to predict the number of pairs of skis sold in November.
 - **c.** In what month were the fewest skis sold?

Month, t	Number of Pairs of Skis Sold, s		
Jan	82		
Mar	42		
May	18		

Determine whether a quadratic model exists for each set of values. If so, write the model.

15. f(-1) = -7, f(1) = 1, f(3) = 1

18.
$$f(2) = 6$$
, $f(0) = -4$, $f(-2) = -6$

19. a. Complete the table. It shows the sum of the counting numbers from 1 through *n*.

Number, n	1	2	3	4	5	Ì
Sum, s	1	3	6]
			A			1

- **b.** Write a quadratic model for the data.
- c. Predict the sum of the first 50 counting numbers.
- **21.** The owner of a small motel has an unusual idea to increase revenue. The motel has 20 rooms. He advertises that each night will cost a base rate of \$48 plus \$8 times the number of empty rooms that night. For example, if all rooms are occupied, he will have a total income of $20 \times $48 = 960 . But, if three rooms are empty, then his total income will be $(20 3) \times ($48 + $8 \cdot 3) = 17 \times $72 = 1224 .
 - **a.** Write a linear expression to show how many rooms are occupied if *n* rooms are empty.
 - **b.** Write a linear expression to show the price paid in dollars per room if *n* rooms are empty.
 - **c.** Multiply the expressions from parts (a) and (b) to obtain a quadratic model for the data. Write the result in standard form.
 - **d.** What will the owner's total income be if 10 rooms are empty?
 - **e.** What is the number of empty rooms that results in the maximum income for the owner?